Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Energy Storage - Assessment of the economic feasibility of liquid air energy storage – SPE
Energy Storage

Assessment of the economic feasibility of liquid air energy storage – SPE

solarenergyBy solarenergyOctober 7, 2024No Comments5 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Researchers have conducted a techno-economic analysis to investigate the feasibility of a 10 MW-80 MWh liquid air energy storage system in the Chinese electricity market. Their assessment found that a significant level of price volatility is currently a critical factor for the commercial maturity of this storage technology.

October 7, 2024 Emiliano Bellini

Researchers from China’s Sichuan Normal University have introduced a real options-based framework to evaluate investments in large-scale liquid air energy storage (LAES).

Their work builds on previous research, in which they presented a LAES system that stores electricity in the form of liquid air or nitrogen cryogenic temperatures. “In our new analysis, we took into account uncertain factors such as investment costs and electricity prices in China,” said the corresponding author of the study. Xiaoyuan Chentold pv magazine. “We also examined the impact of various incentives, including subsidies and preferential tax policies, on the LAES investment.”

Their analysis was performed on a 10 MW-80 MWh LAES system that used a high-temperature thermal oil tank to store compression heat. During the energy storage process, the air is compressed by a three-stage compressor powered by electricity during off-peak hours. The high-pressure air is then cooled by intercoolers and further liquefied via a cold box and a low-temperature turbine expander.

The liquefied air is then depressurized to atmospheric pressure and stored in a liquid air tank. Within this process, the high-temperature air undergoes heat exchange with a heat exchange medium, and the resulting compressed heat is then captured by thermal oil and stored in a high-temperature heat storage tank (HTST) to facilitate air heating during the discharge process . .

See also  How to combine off-grid agrivoltaic energy with large-scale hydrogen production – SPE

During the energy release process, the liquid air is pressurized using a cryogenic pump, followed by evaporation in an evaporator. The high-pressure air produced is then further heated by hot oil from the HTST using a reheater. It is then expanded into a three-stage air turbine unit to generate electricity. The thermal oil used in the reheater is reserved and stored in the low temperature heat storage tank (LTST). The stored oil is used in the next charging cycle.

“In the multi-generation mode, the residual high-temperature thermal oil serves as a heat source for the absorption refrigerator (AR), allowing cold energy to be generated,” Chen explains. “After releasing some of the heat in the AR, the discharged thermal oil is mixed with the low-temperature thermal oil. After heat exchange via heat exchangers (HEXs), the mixed thermal oil is stored in the LTST. This process enables the delivery of hot water to the user side.”

The simulations and calculations of the system were performed using the Aspen HYSYS software. The energy consumption during the compression process is 18,168 MW. The output power of the air turbine is 10.02 MW. In addition, the multi-generation system can provide 3,942.44 kW of heating and 2,114.26 kW of cooling. The return efficiency for the system is 65.71%.

Optimal investment value and timing for the LAES system

Image: Sichuan Normal University

“Our economic analysis showed that under the current conditions of China’s energy market, it is virtually impossible to trigger immediate investment in the multi-generation LAES system,” Chen said. “The recommended investment times are 2029 for Guangdong and 2031 for Jiangsu. For Beijing and Qinghai, the optimal investment time is 2036. At the optimal investment times, specific capital expenditures are estimated to range from $882/kW to 1,177/kW, while the levelized storage costs (LCOS) range from $0.105/kWh to $0.174/kWh. The optimal investment values ​​are approximately $1,176/kW$ for Beijing, $926/kW for Guangdong and $882/kW for Qinghai.”

See also  Fire in a battery container causes €700,000 in damage in Germany – SPE

Regarding the impact of incentive policies, the results show that preferential tax policies can increase the investment value of the LAES system, especially in regions with larger differences in electricity prices in the off-peak periods. Increasing the investment subsidy and the learning effects of technology have a limited impact on stimulating investment. In contrast, the discharge subsidy policy can bring forward investments by at least one year and is preferable for promoting investments in LAES systems. “In Guangdong, investors are recommended to take immediate investment action once the discharge subsidy reaches $0.133/kWh,” Chen said.

The researchers said that ensuring an appropriate level of price volatility is a crucial factor in boosting LAES’ participation in the electricity market.

It is recommended to further improve time-of-use pricing mechanisms to create greater profit potential for LAES operations. Second, policymakers should prioritize the introduction of discharge subsidy policies due to the limited progress in the optimal investment time and improvement of the optimal investment value due to increasing investment subsidies and technology learning effects. Third, governments should actively strengthen markets for ancillary services to provide diversified benefits for LAES projects, as policies that focus on increasing revenues rather than just reducing investment costs are more effective in promoting investment in LAES.

The details of their analysis can be found in the study “A true options-based framework for multi-generation liquid air energy storage investment decisions under multiple uncertainties and policy incentives”, published in Energy.

LAES currently has a Technology Readiness Level (TRL) of 8. The TRL measures the maturity of technology components for a system and is based on a scale of one to nine, with nine representing mature technologies for full commercial deployment.

See also  Engie breaks ground for 800 MWh battery in Belgium – SPE

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

air Assessment economic Energy feasibility liquid SPE storage
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025

Which developers are still wrong with battery risk – PV Magazine International

June 5, 2025

How distributed generation of solar energy meets the energy requirements of America

June 5, 2025
Leave A Reply Cancel Reply

Don't Miss
Solar Panels

Trina donates solar panels to a Wisconsin nonprofit working to create a low-carbon economy

By solarenergyJanuary 23, 20250

Trinasolar USA has announced that it is donating more than 1,200 PERC solar panels for…

New interactive map of the prices of renewable energy in Europe – PV Magazine International

March 24, 2025

Myanmar earthquake disrupts the production of solar wanners, global Supply Chain – PV Magazine International

April 2, 2025

The European business PPA market is set for another record year in 2024 – SPE

October 25, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.