Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Saturday, June 7
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - American scientists develop thermophotovoltaic cells with air bridges with an efficiency of 44% – SPE
Technology

American scientists develop thermophotovoltaic cells with air bridges with an efficiency of 44% – SPE

solarenergyBy solarenergyMay 27, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

US scientists have developed a thermofovoltaic cell that can be combined with cheap thermal storage to provide power on demand. The indium gallium arsenide (InGaAs) thermofovoltaic cell absorbs most of the in-band radiation to generate electricity, while serving as a near-perfect mirror.

May 27, 2024 Emiliano Bellini

Thermophotovoltaic energy (TPV) is a power generation technology that uses thermal radiation to generate electricity in photovoltaic cells. A TPV system typically consists of a thermal emitter that can reach high temperatures, close to or above 1000 C, and a photovoltaic diode cell that can absorb photons coming from the heat source.

The technology has attracted the attention of scientists for decades because it is possible captures sunlight across the entire solar spectrum and has the technical potential to beat the Shockley-Queisser limit of traditional solar photovoltaics. However, the efficiencies reported so far are too low to make it commercially viable as TPV devices still suffer from optical and thermal losses.

With this in mind, a group of researchers from the University of Michigan in the United States has developed TPV cells reportedly address these issues and achieve an energy conversion efficiency of 44%.

“This level of efficiency could allow thermal battery systems to reach a price point needed to power most of the grid on wind and solar energy,” said Andrej Lenert, the study’s lead author. pv magazine. “Such systems must continuously extract energy from a hot storage material such as graphite as it cools from the maximum allowable temperature. By achieving 40% efficiency at storage temperatures as low as 1300C, instead of 2000C as before, this means these batteries can potentially get twice as much energy per kg of graphite.”

See also  The American manufacturer Toledo Solar closes its activities

According to Lenert, this result represents a major improvement in TPVs and solid-state heat generation in general. “It is the result of several years of intensive research to understand how to minimize energy losses and mechanical issues in airlift TPV cells, which we originally reported in 2020,” he added. “Those cells were 32% efficient and relatively vulnerable, now we are closer to 44% and we have a much more robust technology. While still not on the kW or MW scale, this result shows what is possible with single-junction TPV cells, fulfilling decades-old theoretical predictions from the TPV community.”

In the study “High-efficiency thermophotovoltaic cells with air bridge”, which was recently published in JouleLenert and his colleagues described the cell as an airlift device of indium gallium arsenide (InGaAs) that can absorb most of the in-band radiation to generate electricity. It can also serve as a near-perfect mirror, with a reflectivity of almost 99%.

The cell is built with a silicon substrate, an airlift structure with a thickness of 570 nm, a back contact made of gold (Au), titanium (Ti), an n-doped InGaAs layer, a membrane layer with a thickness of 1 µm, an InGaAs absorber and a front contact made of Au, Ti, platinum (Pt) and p-doped InGaAs. Three different absorber layers were tested with energy band gaps of 0.74 eV, 0.90 eV and 1.1 eV, respectively.

The The airlift layer is embedded between the three active layers and the back Au mirror to enhance back reflection and out-of-band photon recovery. The membrane support layer is intended to minimize buckling of the free-standing semiconductor membrane and ensure a single cavity mode within the air layer.

See also  Longi claims 34.6% efficiency for perovskite-silicon tandem solar cells – SPE

“The combination of a nanoscale air layer and a relatively high coverage of conductive back electrodes ensures that the thermal resistance of the air bridge is small compared to that of the Si substrate,” the scientists pointed out. “In addition, the design includes a membrane support layer to minimize buckling of the free-standing semiconductor membrane and ensure a single cavity mode within the air layer.”

The researchers found that the cell had an absorber band gap of 0.90 eV achieved the best performance. It achieved an energy conversion efficiency of 43.8% at 1,435 C. “It exceeds the 37% achieved by previous designs within this temperature range,” Lenert said. “We have not yet reached the efficiency limit of this technology. I am confident that in the not too distant future we will get above 44% and push 50%,” said study co-author Stephen R. Forrest.

These results also promise significant improvements in the return efficiency of the device, according to the research group. “It is a form of battery, but one that is very passive. You don’t have to extract lithium like you do with electrochemical cells, which means you don’t have to compete with the electric vehicle market,” Forrest further explains. “Unlike pumped water for hydroelectric energy storage, you can put it anywhere and you don’t need a water source nearby.”

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editorial@pv-magazine.com.

Source link

air American bridges cells develop efficiency scientists SPE thermophotovoltaic
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025

HoarFrost-inspired technology to improve MPPT in PV systems under partial Shadow-PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
Solar Industry

Anti-icing coating based on octaspherosilicates for PV systems

By solarenergyOctober 17, 20240

The new coating, developed by scientists in Poland, uses transparent silicone epoxy modified with functionalized…

Italian regional authorities approve 5.1 GW of utility-scale PV projects in January-September – SPE

October 6, 2024

Western tariffs pose a ‘challenge’ for Chinese battery giant CATL

June 28, 2024

Electricity prices continue recovery in Europe – SPE

May 1, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025
Our Picks

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.