Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Saturday, June 7
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - Chinese researchers develop 28 µm silicon solar cell with an efficiency of 20% and a breakage rate of 0% – SPE
Technology

Chinese researchers develop 28 µm silicon solar cell with an efficiency of 20% and a breakage rate of 0% – SPE

solarenergyBy solarenergyJune 20, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

A research team in China has developed a new thin silicon wafer reinforced ring (TSRR) to protect ultra-thin wafers and solar cells during production. This technique consists of applying the ring to the edge of thin wafers and is compatible with all silicon solar panel technology.

June 19, 2024 Valerie Thompson

A research team from China’s Shanghai Jiao Tong University and Sun Yat-sen University has shown that applying a new thin silicon wafer reinforced ring (TSRR) to the edge of thin wafers makes the PV material much less susceptible to breakage. The TSRR was demonstrated on silicon wafers with a thickness of 4.7 μm, solar cells with a thickness of 28 μm and larger wafers with a thickness of 60 μm.

“Our team has developed a new technique compatible with industrial manufacturing processes to enable the use of ultra-thin crystalline silicon wafers that are smaller than 60 μm and can be as thin as 20 μm. The technology makes the cells radically less brittle,” says researcher Taojian Wu pv magazine.

“We were surprised that there was a 4-in [100 mm] wafer with a thickness of less than 5 µm could be obtained by a simple reinforced ring method, and that with this method we can easily make 28 µm silicon solar cells with an efficiency of more than 20%,” said Wu, adding that subtle improvements in the ‘structure of thin silicon’ has led to such ‘great progress’.

In the study, the team first constructed a free-standing 4.7 μm-thick 4-inch (100mm) wafer with TSRR. It then used TSRR to create doping-free 28 μm silicon cells with interdigitated back contacts (IBC), resulting in a breakage rate of approximately 0%. The cell efficiency achieved was 20.33% and was certified at 20.05%.

See also  Low tilt angles, ideal for regions with high summer load demand – SPE

This was the highest efficiency reported for silicon solar cells with a thickness of less than 35 μm, according to more than a decade of performance data in the literature collected by the team.

The researchers noted that the TSRR method requires only three more production steps than conventional PV mass production. It first deposits a 70 nm layer of silicon nitride (SiNx) on both sides of conventionally thick silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) or low-pressure chemical vapor deposition (LPCVD), after which the SiNx is removed from the central region. of one side using a die, laser or photolithography, to create an opening, and followed by an etching step with an alkaline solution to the desired thickness, the team said.

The SiNx layer provides protection and ensures that the silicon in the edge area of ​​the wafer retains its original thickness, the research team explains. “The difficult part is the process of applying a high-quality SiNx protective film, which must be able to withstand long-term etching with an alkaline solution,” said Wu. “The easy part is the manufacturing process of thin silicon solar cells, because we can process thin silicon wafers with reinforced rings in the same way as normal silicon wafers.”

The team claimed that the TSRR structure is applicable to “any silicon technology,” such as passivated emitter and back cell (PERC), silicon heterojunction (SHJ), tunnel oxide passivating contact (TOPCon), as well as doping-free passivating contact xBC cell technologies.

To better understand the optoelectric performance of the experimental solar cells, the team performed a numerical TCAD simulation of solar cells with front and back contacts (FBC). The experiments and mechanical property simulations comparing TSRR with conventional thin silicon structures confirmed the supporting role of the TSRR, the research group said.

See also  Letter from Chinese PV Industry: ZNShine Solar plans to list in Hong Kong

The team also prepared textured TSRR wafers from 50 μm to 60 μm, with dimensions of 182 mm x 182 mm, and performed key manufacturing processes to confirm the industrial compatibility of the TSRR method. “We have received feedback from our partner company that the breakage rate during the manufacturing of 60 μm-SHJ solar cells has been significantly reduced,” said Wu.

The research is described in detail in “Free-standing ultra-thin silicon wafers and solar cells through edge reinforcement,” published by communication about nature.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Source link

breakage cell Chinese develop efficiency Rate researchers silicon solar SPE µm
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025
Leave A Reply Cancel Reply

Don't Miss
News

SSE Renewables is claiming a pumped storage system of 30 GWh

By solarenergyAugust 14, 20240

Exploratory drilling and testing will take place over the next three months. Image: SSE Renewables.…

TCL Zhonghuan unveils plans to acquire a majority stake in Maxeon – SPE

May 31, 2024

Improving the performance of PV installations through an optimized charging ratio of the inverters – SPE

January 24, 2025

ABB will acquire Gamesa Electric’s activities, including BESS, utility inverters

December 22, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025

Don’t let the Congress undo the energy progress of West Virginia

June 7, 2025
Our Picks

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025

Solar -Wafer prices have fallen 22.78% since April peak

June 7, 2025

China’s XYZ launches 261 kWh immersion-cooled commercial battery-PV Magazine International

June 7, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.