Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

Until UK Solar Acquisition sites unveiled

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

GASSPIJPLEMENT COMPETITION COMMITTESS 130-MW TEXAS SOLAR PROJECT

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Solar Industry - Dynamic modeling for building-integrated photovoltaic-thermal systems
Solar Industry

Dynamic modeling for building-integrated photovoltaic-thermal systems

solarenergyBy solarenergyJune 20, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Researchers in the Middle East have conducted a series of simulations to assess the technical and economic feasibility of building-integrated photovoltaic-thermal systems. The proposed framework could be applicable to different building types and geographic locations.

June 20, 2024 Lior Kahana

Researchers from Jordan’s Al al-Bayt University have developed comprehensive theoretical dynamic models to analyze the performance of integrated photovoltaic thermal (BIPV/T) systems.

The scientists tested their new framework through a series of simulations conducted on a residential building in the north-central city of Mafraq in Jordan. They optimized the BIPV/T system to maximize output and efficiency while minimizing panel area.

“Mafraq is one of the most suitable regions in Jordan for harnessing the potential of solar energy and implementing solar thermal energy installations,” the academics said. “It has a daily mean direct normal irradiance (DNI) ranging from 6.54 to 7.29 kWh/m2 and an annual mean wind speed of 4.72 m/s, enjoying abundant solar radiation and abundant wind resources.”

The building was simulated with MATLAB/Simulink. It had a roof area of ​​200 m2, with a hot water requirement supplied by the thermal part of the panels of 10 m3 per month. The average electricity demand for winter, spring, summer and autumn was 452 kWh, 582 kWh, 443 kWh, 342 kWh and 441 kWh, respectively.

It was assumed that the BIPV/T panels would each have a power of 320 W and an efficiency of 16.49%. The hourly solar radiation and ambient temperature data fed to the model comes from an artificial neural network (ANN) developed by the group. According to the researchers, the model achieves high accuracy values ​​of more than 0.97 for the predicted solar irradiance during training, validation, testing and the overall dataset.

See also  JinkoSolar supplies 3 GW of modules in Saudi Arabia

“The comprehensive ANN-based modeling and optimization approach can help policymakers and energy professionals analyze within reasonable domain time and with good accuracy, accelerating design and performance improvement-based analyzes and tasks,” the team said.

For the optimization task, the group chose the Non-Dominated Genetic Sorting Algorithm II (NSGA-II), while also integrating the Preference Order by Similarity to the Ideal Solution (TOPSIS) technique. NSGA-II optimizes multiple objectives by ranking solutions based on dominance, while TOPSIS ranks options by comparing their closeness to the best and worst possible solutions.

The analysis showed that the optimal solution for winter involves the installation of 15 modules, with an electrical power of 2,606 W, a thermal power of 5,569 W and a total electricity produced of 21.95 kWh. In summer, the optimal solution is 16 modules with an electrical power of 1,780 W, a thermal power of 4,700 W and a total electricity produced of 23.63 kWh. 12 BIPV/T modules were required for the spring seasons and 14 in the fall.

The scientists also conducted an economic analysis. In this analysis, they assumed that the BIPV/T would last 20 years, that the interest rate would be 5%, and that the variable operating costs for the system would be $0.1/kWh. In addition, the base cost was set at $1,067 for the hot water storage tank, $180/kW for the inverter and controller, and $200/m2 for the BIPV/T panels.

Under these conditions, the levelized energy cost (LCOE) was found to be $0.1/kW. If equipment costs increase by 20%, the LCOE will reach $0.12/kW, while if it increases by 40%, the price will reach $0.14/kW. If equipment prices fall by 20%, the LCOE is $0.08/kW, and if they fall by 40%, the cost is $0.06/kW.

See also  IEA-PVPS shares guidance on technical KPIs for PV systems – SPE

“The findings indicate that the proposed framework may be applicable to different building types and geographic locations. Consequently, it has significant value in promoting the use of solar energy with optimal energy, economic and environmental performance,” the academics concluded.

The results are presented in “Energy and economic analysis of an integrated photovoltaic thermal system in buildings: seasonal dynamic modeling supported by a machine learning-assisted method and multi-objective genetic optimization,” published in Alexandria Engineering Journal.

The team also included scientists from King Fahd University of Petroleum & Minerals in Saudi Arabia, University College London in Britain, the University of Durham and the University of Engineering and Technology in Pakistan.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Source link

buildingintegrated Dynamic modeling photovoltaicthermal systems
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Free Digital Tool Streamlines the Lay -Out Plan for Solar Storses On The Roof

June 5, 2025

Coldplay, Cardinia Energy Rolled Printed Solar during the concert in Stanford Stadium

June 5, 2025
Leave A Reply Cancel Reply

Don't Miss
Cummunity

Community Solar will reach 14 GW by 2029, says Wood Mackenzie

By solarenergyAugust 14, 20240

(Source: Wood Mackenzie) According to the latest report from Wooden Mackenzie and the Coalition for…

SMA America releases 99.2% efficient grid battery storage inverter

March 22, 2025

USA busy with Netto Meet, community zone policy in Q1

April 18, 2025

Work is underway on Lightsource bp’s 560 MW solar project in Greece – SPE

July 27, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

Until UK Solar Acquisition sites unveiled

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

GASSPIJPLEMENT COMPETITION COMMITTESS 130-MW TEXAS SOLAR PROJECT

June 6, 2025

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025
Our Picks

Until UK Solar Acquisition sites unveiled

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

GASSPIJPLEMENT COMPETITION COMMITTESS 130-MW TEXAS SOLAR PROJECT

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.