Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - Integration of heat sources with low temperature in heat pumps on an industrial scale-PV Magazine International
Technology

Integration of heat sources with low temperature in heat pumps on an industrial scale-PV Magazine International

solarenergyBy solarenergyFebruary 5, 2025No Comments5 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

The Fraunhofer Isee has designed a new method for assessing the potential of heat sources for low temperature for large -scale heat pumps. The five -step process was tested on the German city of Fellbach, so that the heat sources with LCOH were lower than € 0.1/kWh lower.

February 5, 2025
Lior Kahana

Researchers at the Fraunhofer Institute for Solar Energy Systems (Fraunhofer Isee) of Germany have proposed a new method for assessing and comparing heat sources for low temperature for integration with industrial heat pumping activities.

The proposed method is based on five steps: identifying heat sources; evaluation of their heating availability and potential; approaching the costs of the extraction and the offer of heat source; comparing the possibilities and costs; And finally provide recommendations to municipal heating calers.

“All local municipal heat sources must be assessed on their potential and availability,” the group said. “The individual assessment of each heat source, including air (ambient and exhaust), water (rivers, lakes, oceans, waste water) and soil (surface and deep geothermal) will contribute to a better informed decision -making for municipal energy planners. In this respect, this article suggests a indicator-based heat source evaluation method using open-source data. “

The first step uses open-source geographical information tools such as Open-Streetmap. This information – which includes industrial locations, waste water treatment plants, water wells and river and multi -areas – is collected within a Geo information system (GIS). However, the team emphasizes that heat sources such as deep geothermal, data centers, mines and industrial waste heats may not be identifiable without detailed research.

See also  Avery Dennison debuts new pressure-sensitive tires for PV-modules-PV Magazine International

The second step includes the consideration of all different indicators for potential heat sources with a low temperature. A total of 40 indicators are considered in technical, regulatory, economic and environmental categories. Various calculations, based on those indicators, are used to assess the potential of the various air-based, water-based, and solar energy-based heat sources.

The next step is the cost approach, which is based on technical potential assessment. “Every identified heat source is evaluated on the basis of the expected investment and operating costs of thermal generation units. The required generation capacity is linked to the heat demand close to the location in an area of ​​two by two km2 to allocate the possible capacity sizes of heat exchangers, building measurements, heat pumps, control and other required generation components and to allocate their costs and their costs All to be allocated, “the academics explained.

The fourth step of the proposed method compares the results in four frameworks. The first is compression in absolute terms by heat exchanger and source, as annual energy roofs for the specific analyzed area. The second is a relative comparison when only sources of the same geographical type are compared. The third framework compares the certainty of heat sources based on a quantitative assessment of the data quality. The last proposed framework compares the heat sources with the level of heat (LCOH).

Comparison of the LCOH in Fellbach

Image: Fraunhofer Institute for Solar Energy Systems (ISE), Applied Energy, CC by 4.0

“The recommendation in step 5 is based on the previously introduced four steps of the methodology and concludes with a list of promising heating candidates within the chosen boundaries of the research subject,” the researchers explained. “The recommendation process summarizes the results in a repeatable way for the decisive planners.”

See also  Vikram Solar to enter the production of Solid-State battery PV Magazine International

To demonstrate the method, the scientist took a case study from the German city of Fellbach. Located in the southwest of the country and the home base of around 45,000 inhabitants, the combined heat demand for 2022 was 472 GWH and the demand for electricity was 193 GWH. The city is mainly dependent on gas and oil boilers for heat supply.

In the first part of the method, the researchers have identified the river neck, four groundwater wells, various large industrial plants and supermarkets, and potential heat extraction areas in the vicinity of residential areas as potential heat sources. The team was able to compression based on the technical and economic estimate of each possible source.

“The Case Study-Specific LCOH for five of the analyzed sources falls under 0.1 € (0.104 $)/kWh, while the LCOH of the five soil-based heat sources exceeds more than € 0.1/kWh,” the results mentioned. “The results of the Case Study show competitive thermal supply costs for five heat sources: industrial waste heat, surface water river, thermal solar, waste water and supermarket waste heat.”

Based on LCOH compression and the other framework, the team ordered to further develop a proof of concept for extracting heat from the river water, thermal solar panels and industrial waste heat. They also recommend considering the possibility of extracting heat from a geothermal geothermal near a new residential area.

The method was presented in “Evaluation of heat sources with a low temperature for large-scale heat pumpintegration: a method using open-source data and indicators“Published in Applied energy.

This content is protected by copyright and may not be reused. If you want to work with us and reuse part of our content, please contact: editors@pv-magazine.com.

See also  Acoustics for Solar Harmony - PV Magazine International

Popular content

Source link

heat industrial integration International magazine pumps scalePV sources temperature
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Which developers are still wrong with battery risk – PV Magazine International

June 5, 2025

Eternal Sun acquires Wavelabs – PV Magazine International

June 5, 2025
Leave A Reply Cancel Reply

Don't Miss
Energy Storage

Switzerland is expanding rules for solar energy, storage, energy communities – PV Magazine International

By solarenergyFebruary 24, 20250

Switzerland is expanding rules for solar energy, energy storage and energy communities on the roof…

New tool tips solar energy to meet 50% of global energy demand by 2035 – SPE

January 15, 2025

Number of applications for solar energy in the Dutch subsidy scheme has fallen by more than half – SPE

December 19, 2024

Fraunhofer CSP develops new patent infringement investigation methods for PV technologies – SPE

September 2, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025

The Solar Policy Scoop: June 2025

June 6, 2025
Our Picks

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.