Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - Mimicking chimpanzee hunting behavior to improve PV prediction models – SPE
Technology

Mimicking chimpanzee hunting behavior to improve PV prediction models – SPE

solarenergyBy solarenergySeptember 11, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Researchers used the chimpanzee optimization algorithm to optimize the hyperparameters of five machine learning models for predicting PV energy yield. This algorithm is based on the cooperative hunting behavior of chimpanzees in nature and mimics the way they work together to hunt prey.

September 11, 2024 Lior Kahana

A scientific group led by researchers from Germany’s Jordan University has analyzed the effect of the so-called chimp optimization algorithm (ChOA) on various Machine Learning (ML) models for predicting PV yield production.

The ChOA is based on the cooperative hunting behavior of chimpanzees in nature, mimicking the way they work together to capture prey, which is common in small mammals. They usually act in a group of three or four hunters and initially drive and block prey, then chase and attack them.

The algorithm examines different combinations of parameters to achieve the most promising result. It was used by the scientists to optimize the hyperparameters for five types of ML models. These include multiple linear regression (MLR), decision tree regression (DTR), random forest regression (RFR), support vector regression (SVR), and multilayer perceptron (MLP).

“The effectiveness of this contribution is verified using data from a real case study, using several performance metrics from the literature, including the root mean square error (RMSE), the mean absolute error (MAE) and the coefficient of determination ( R2),” the researchers explained.

Hyperparameters are external configurations set before the learning process begins that determine the learning process and do not change during training. Hyperparameters – such as the learning rate in neural networks – influence training dynamics and can therefore significantly impact model effectiveness.

See also  Strategies to reduce the breakdown of perovskiet solar cell, caused by thermal stress - PV Magazine International

All five models, with and without ChOA, were trained on 948 records and tested on 362 records. The data was taken between 2015 and 2018 from a 264 kW PV system installed on a roof of the Applied Science University in Amman, the capital of Jordan. The tilt angle of the installation was set at 11 degrees and the azimuth angle at −36 degrees. Meteorological variables such as wind speed, relative humidity, ambient temperature and solar radiation were measured from a nearby weather station.

“Amman, Jordan, experiences a Mediterranean climate characterized by hot, dry summers and cool, wet winters,” the researchers added. “the average year-round temperature is 17.63 C, and the average annual global horizontal irradiation is 2040.2 kWh/m2.”

Through this analysis, the scientists found that all models experienced performance improvements as a result of refining the hyperparameters using the ChOA.

“DTR showed substantial improvements, with test RMSE decreasing to 1.972 and R2 increasing to 0.951,” they explained. “The RFR model showed notable improvements, with RMSE values ​​decreasing to 1.773 for training and 1.837 for testing, and R2 values ​​increasing to 0.964 for training and 0.963 for testing. The SVR model experienced the most notable improvement, with test RMSE decreasing to 0.818 and R2 increasing to 0.977.”

After ChOA optimization, MLP was found to show the best results in predicting PV energy yield. Specifically, it could reach 0.503, 0.397, and 0.99 in RMSE, MAE, and R2, respectively. “The ChOA effectively refined the parameters, resulting in improved model fit, reduced overfitting, and improved generalization compared to two other commonly used optimization algorithms from the literature: particle swarm optimization (PSO) and genetic algorithm (GA),” the team said. concluded.

See also  Canadian Startup unveils substring inverterprototypes - PV Magazine International

The results are presented in “Improving the prediction of solar photovoltaic energy production using various machine learning models aligned with the Chimp optimization algorithm”, published in Scientific reports. The group included academics from the Jordanian German Jordanian University, the University of Jordan, Al-Balqa Applied University and Alabama University. Tuskegee University.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

behavior chimpanzee hunting improve Mimicking models Prediction SPE
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

New pollution room for testing dust structure in solar modules – PV Magazine International

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
News

Solar projects offered earlier dates for grid connection by UKPN

By solarenergyMay 5, 20240

UKPN will bring forward the connection dates for 25 projects in the United Kingdom. Image:…

Solis inverters now UL9540 certified with Pytes batteries

October 17, 2024

Solar Wizard is launched to support rooftop solar energy

June 21, 2024

Energy Vault unveils design partnership for gravity storage in skyscrapers – SPE

June 5, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.