Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

Brazil Solar Import slow as new Chinese trade routes open

June 6, 2025

Anker Solix launches F3000 Portable Power Station for Homeback Use – PV Magazine International

June 6, 2025

HoarFrost-inspired technology to improve MPPT in PV systems under partial Shadow-PV Magazine International

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - New bidding strategy for PV asset owners active in the spot market – SPE
Technology

New bidding strategy for PV asset owners active in the spot market – SPE

solarenergyBy solarenergyAugust 8, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

The new bidding strategy, devised by an international research team, applies to the day-after and intraday markets. It uses a technique that converts results from probabilistic models into actual scenarios. Their method showed that it was able to generate higher revenues and reduce imbalances.

August 8, 2024 Lior Kahana

An American-Dutch research team has developed a new bidding strategy for operators of PV installations participating in electricity spot markets. It is based on converting probabilistic solar energy forecasts into interdependent scenarios used in the multi-stage bedding strategy.

According to the researchers, the new method can ensure higher incomes and fewer imbalances. “Accurate forecasts can help timely plan the shipment of power generators and batteries, thereby ensuring the stability of the power grid while reducing the need for balancing reserves,” they said. “There is a lack of studies that develop and evaluate operational stochastic bidding strategies for electricity markets that consider PV systems and rely on probabilistic solar forecasting models.”

The bidding strategy is designed to optimize bidding results taking into account the uncertainty of PV energy generation. It is primarily intended to maximize income from the day-ahead market (DAM) by considering a range of scenarios, which are a range of possible asset returns. To achieve this goal, the Pinson method was used, a statistical technique that can transform probabilistic forecasts into scenarios that take into account the interdependence structure of the forecast errors.

“The method was originally developed for the purpose of forecasting wind power and was later also successfully used for forecasting net load, i.e. demand was subtracted from solar power generation,” the academics explained.

See also  India's Cdil Semiconductors launches Solar Bypass Dodes - PV Magazine International

After creating different scenarios, a bid is generated by solving some numerical problems. Corrections to the initial DAM bid are then made in the intraday market (IM), using updated PV power forecasts. “The impact of real-time deviations is taken into account in the imbalance prices for up- and down-regulation,” the team added.

Turnover as a function of the continuous ranked probability score (CRPS)

Image: Utrecht University, Applied Energy, CC BY 4.0

The scenarios created with the Pinson method were based on three probabilistic models: quantile regression (QR), quantile regression forest (QF) and clear sky persistence ensemble (CSPE). All were compared with point prediction methods, which yield one predicted value for each period.

“The point prediction models include a multivariate linear regression (MLR), random forest regression (RF), physical PV and a smart (clear sky) persistence (SP) model,” the scientists explained. “Since these point forecasts do not provide any information about the uncertainty of the forecast, the potential monetary impact of an imbalance is not taken into account.”

All prediction mechanisms were then run on data produced from a simulation of a 1 MW system in Cabauw, the Netherlands. The analysis was based on actual measured global horizontal irradiation (GHI), ambient and dew point temperature, wind speed and surface pressure from 2018 to 2020. The first two years of data collected were used to train the different forecast models, while 2020 was used for testing .

“The results show that the probabilistic prediction models perform better than the point models,” the scientists emphasized. “Second, the results demonstrate the dominance of tree-based models, with the RF and QF models outperforming all other DA and ID point and probabilistic models, respectively. The findings indicate that the proposed method outperforms the reference method, produces higher yields and causes less imbalance.”

See also  Bifacial tracking systems dominate the utility-scale PV market – SPE

The analysis also showed that expanding market participation from the DAM to the IM results in higher revenues. “Given the best performing model per forecast horizon, revenues increase by 22.3% from €22,000 ($23,900)/MW to €27,000/MW per year when DAM transactions are updated with IM transactions,” they concluded. “Similarly, the imbalance caused almost half, at -46.8%.”

Their findings were presented in “Probabilistic solar forecasting: an economic and technical evaluation of an optimal market bidding strategy,” published on Applied energy. The group included researchers from Utrecht University, Wageningen University and the University of California, San Diego.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Source link

active asset bidding Market owners SPE spot strategy
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

HoarFrost-inspired technology to improve MPPT in PV systems under partial Shadow-PV Magazine International

June 6, 2025

New pollution room for testing dust structure in solar modules – PV Magazine International

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
Energy Storage

Statera purchases a 680 MW BESS project from Carlton Power

By solarenergyJanuary 10, 20250

The 680 MW Carrington Storage proposal is Statera Energy’s largest approved BESS project to date.…

DESRI completes an 80 MW Elektron solar project in Utah

May 16, 2024

Antimony selenide solar cells can achieve an efficiency of up to 26% – SPE

June 28, 2024

Sunrun’s solar and storage VPP supports California’s grid with 48 MW per night during heat waves

July 20, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

Brazil Solar Import slow as new Chinese trade routes open

June 6, 2025

Anker Solix launches F3000 Portable Power Station for Homeback Use – PV Magazine International

June 6, 2025

HoarFrost-inspired technology to improve MPPT in PV systems under partial Shadow-PV Magazine International

June 6, 2025

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025
Our Picks

Brazil Solar Import slow as new Chinese trade routes open

June 6, 2025

Anker Solix launches F3000 Portable Power Station for Homeback Use – PV Magazine International

June 6, 2025

HoarFrost-inspired technology to improve MPPT in PV systems under partial Shadow-PV Magazine International

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.