Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - New technology to predict the temperature of the solar – inverter – PV Magazine International
Technology

New technology to predict the temperature of the solar – inverter – PV Magazine International

solarenergyBy solarenergyMarch 4, 2025No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

An international research team has developed a new approach to predict the transformer temperature through symbolic regression based on the optimization of particle swarm.

March 4, 2025
Lior Kahana

A group of scientists from the pontifical Bolivarian University of Colombia has developed a new temperature prediction method for PV -Omsorers who uses symbolic regression (SR) on the basis of particle swarm optimization (PSO) for prediction.

SR is a machine learning technique that identifies mathematical expressions that describe the relationship between input variables and export data; PSO is a bio-inspired optimization algorithm.

“The correct temperature control of a solar version is essential for maintaining the efficiency and life of these systems. Inaccurate temperature modeling of solar conformers can significantly influence their performance and reliability, which influences the thermal management and the operational efficiency of these devices, “the group said.

“In addition, incorrect temperature forecasts can lead to suboptimal strategies for thermal management, resulting in energy losses and reduced efficiency of solar converters.”

The PSO-based SR algorithm starts with defining internal symbolic variables. Random symbolic expressions are made by combining 3-6 terms from the pre-defined function list and then the expressions are evaluated with the help of root-average square error (RMSE) between predicted and actual values. After this, the PSO works itself based on the personal and global best solution it has found. “The algorithm refines iterative expressions about 25 iterations, balance between exploration and exploitation to minimize RMSE,” the academics added.

SR PSO power chart

Image: Pontifical Bolivarian University, International Journal of Advanced Computer Science and Applications (IJACSA), CC by 4.0

To train and test the emergency model, the group has made a database of a PV system on the roof of a building in Montería, Colombia. The inverter was housed in the structure on the roof and had a nominal capacity of 36 kW with a wealth voltage range of 540-800 VDC. The temperature, active power and DC bus voltage of the inverter were registered for a year and 70% of those data points were then used to train the new method, using 30% to test it. It was compared with a multiple linear regression (MLR) model and SR on the basis of genetic algorithms (GA).

See also  Quantifying the benefits of vehicle-integrated solar photovoltaics – SPE

The results showed that the SR PSO did best on both the training and testing. In the training it had an RMSE of 3.97 and an average absolute error (Mae) of 3.36, while the MLR had 4.22 and 3.55 respectively. SR GA scored with an RMSE of 4.59 and a Mae of 3.78. In the test phase, the SR PSO had an RMSE of 4.12, MLR had 4.52 and SR GA had 4.8. The Mae was 3,31, 3.73 and 3.66 respectively.

“Regarding the computer time, the algorithm completed 25 iterations within 0.175 hours per version. The RMSE reduction achieved a value of 3.97 and positioned it as a competitive method compared to techniques such as neural networks or traditional multivariate regression for problems with non -linear relationships, “concluded the group. “The limit of 25 corrections in the symbolic regression algorithm based on PSO ensures a short and controlled implementation time (0.175 hours), balancing the calculation efficiency and precision when searching for solutions.”

The new approach was presented in “Temperature prediction for photovoltaic inverters using the symbolic regression based on particles swarm optimization: a comparative studyPublished in the International Journal of Advanced Computer Science and Applications (IJACSA). Scientists from Spain’s University of Pamplona and Valencia Polytechnic University, as well as those of Mexico University of Guadalajara Participated in the research work.

This content is protected by copyright and may not be reused. If you want to work with us and reuse part of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

See also  All unmanned ground vehicles for monitoring solar plants at a glance - PV Magazine International
International inverter magazine predict solar technology temperature
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025

The Solar Policy Scoop: June 2025

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
Technology

ChatGPT can tell scientists how to build better perovksite solar cells, says study – SPE

By solarenergyJune 25, 20240

An international research group has attempted for the first time to build a perovskite solar…

KGAL impact fund acquires first solar project in the Czech Republic – SPE

August 21, 2024

Hazardous waste treatment center in Arkansas adds solar and other environmental measures

October 10, 2024

New electrically conductive adhesives for flexible perovskite, organic solar cells

September 28, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025

The Solar Policy Scoop: June 2025

June 6, 2025
Our Picks

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025

Circular Economy Initiatives in Solar (2025)

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.