Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

The Solar Policy Scoop: June 2025

June 6, 2025

House of Lords: Government in danger to missing CP2030 target

June 5, 2025

Free Digital Tool Streamlines the Lay -Out Plan for Solar Storses On The Roof

June 5, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - Optimal size ratios for solar and wind hydrogen production – SPE
Technology

Optimal size ratios for solar and wind hydrogen production – SPE

solarenergyBy solarenergyJuly 4, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Researchers in Italy outlined a new model for estimating hydrogen production costs as a function of plant component sizes. They tested PV, wind and hybrid hydrogen production to determine the optimal size ratio for the period 2030-2050. They also found that solar hydrogen can currently reach a levelized hydrogen price of €5.11/kg in Italy, with a PV ratio of 2.2.

July 4, 2024 Lior Kahana

Researchers from the Italian Ministry of Environment and Energy Safety and the Polytechnic University of Turin have developed a new model to estimate hydrogen production costs as a function of plant component sizes.

“The goal is to go beyond the analysis of a specific case study and provide broadly applicable considerations for the optimal design of green hydrogen production systems,” the researchers said, noting that the research was conducted for four production scenarios – PV energy only , wind energy only, solar-wind hybrid production and battery storage hybrid production. “A sensitivity analysis of the investment costs for the energy-to-hydrogen technologies is also being conducted to explore different technology learning pathways from today to 2050.”

The simulation is based on capacity factors from 2016 in Italy, which was identified as the most typical reference weather year for the country. The proposed scenario assumed a capex of €650/kW for PV, €1,120/kW for wind energy, €306/kWh for battery storage and €1,188/kW for the electrolyzers.

“The sensitivity analysis includes size ratios from 0.5 to 8 and battery autonomy values ​​from 0 to 6 hours, ensuring the identification of the point of minimum levelized cost of hydrogen (LCOH),” they explained. “Through this analysis, the trends of the energy and economic indicators as a function of the design ratios are achieved and the cost-optimal design point (minimum LCOH) is determined.”

See also  France records 233 hours of negative electricity prices in the first half of the year – SPE

From their analysis, the scientists concluded that the LCOH for the PV-only configuration is €5.11/kg and is achieved with a PV ratio of 2.2. This means that the PV power must be 2.2 times greater than the power calculated by an electrolyser. For the wind-only scenario, the LCOH was estimated at €5.76/kg, with a ratio of 2.8.

“The optimal hybrid solution is characterized by a lower LCOH value (€5.04/kg) compared to the PV and WT only configurations, and the optimal size ratio is 1.6 for both PV and WT,” they further explained . “The introduction of battery storage does not appear to be useful from an economic point of view, in terms of LCOH.”

In a next step, the researchers repeated the simulation with assumed capex for the 2030 and 2050 scenarios. In their 2030 scenario, the capex was €450/kW for PV, €1,040/kW for wind energy, €175/kWh for battery storage and € 701/kW for electrolyzers. The investments in 2050 amounted to €350/kW, €960/kW, €131/kWh and €314/kW respectively.

“The optimal PV ratio drops from 2.2 in the current scenario to 2.1 in 2030 and 1.9 in 2050,” the results showed. “The costs of hydrogen production are also decreasing from the current to the future scenario. In concrete terms, the LCOH, which at current technology costs is €5.11/kg, will fall to €3.28/kg in 2030 and €2.04/kg in 2050.”

Popular content

For the future wind scenarios, the ratio drops to approximately 2.4 in 2030 and 1.9 in 2050, with prices falling to €4.69/kg and €3.71/kg respectively. For the hybrid case, the wind ratio drops to zero in the 2030 and 2050 scenarios, while the PV ratio increases to 2.1 in 2030 and decreases to 1.9 in 2050 to compensate for the absence of wind energy. The LCOH drops to €3.28/kg in 2030 and €2.04/kg in 2050.

See also  ISC Konstanz claims a certified efficiency of 24.12% for solar cells with tunnel back contact – SPE

“It is essential to provide guidance to industrial users and stakeholders on the appropriate sizing of new electricity-to-hydrogen plants,” the academics concluded. “Given the high costs of the technologies involved, the design should aim for a cost-optimal layout to minimize hydrogen production costs and increase the competitiveness of low-carbon hydrogen in the market.”

Their findings were presented in “Design of hydrogen production systems powered by solar and wind energy: understanding the optimal size ratios,” published on Energy conversion and management.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Source link

hydrogen Optimal production ratios size solar SPE wind
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

The Solar Policy Scoop: June 2025

June 6, 2025

Free Digital Tool Streamlines the Lay -Out Plan for Solar Storses On The Roof

June 5, 2025

Eternal Sun acquires Wavelabs – PV Magazine International

June 5, 2025
Leave A Reply Cancel Reply

Don't Miss
Policy

‘Never underestimate the power of a strong network’ – SPE

By solarenergyDecember 22, 20240

This week, Women in Solar Europe (WiSEu) gives voice to Carol Murphy, Head of Independent…

New software aims to cut residential solar contract cancellations

November 25, 2024

Gstar commits to a 2 GW solar module factory in the UAE – SPE

August 30, 2024

Flow Power plans a DC-coupled battery to increase the flexibility of solar energy – SPE

October 3, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

The Solar Policy Scoop: June 2025

June 6, 2025

House of Lords: Government in danger to missing CP2030 target

June 5, 2025

Free Digital Tool Streamlines the Lay -Out Plan for Solar Storses On The Roof

June 5, 2025

Which developers are still wrong with battery risk – PV Magazine International

June 5, 2025
Our Picks

The Solar Policy Scoop: June 2025

June 6, 2025

House of Lords: Government in danger to missing CP2030 target

June 5, 2025

Free Digital Tool Streamlines the Lay -Out Plan for Solar Storses On The Roof

June 5, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.