Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Solar Industry - Photovoltaic-thermal panel based on duct box heat exchanger
Solar Industry

Photovoltaic-thermal panel based on duct box heat exchanger

solarenergyBy solarenergyAugust 8, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Scientists in Morocco have designed a photovoltaic-thermal panel that uses a channel-box heat exchanger consisting of 94 channels connected directly to the PV module. The simulated design reportedly results in an overall panel efficiency of more than 90% and good results in terms of temperature inhomogeneity.

August 8, 2024 Emiliano Bellini

A group of scientists led by Chouaïb Doukkali University in Morocco has designed a photovoltaic-thermal solar panel based on a duct box heat exchanger, aimed at improving convective exchange.

They explained that the proposed design offers the advantage of having the entire panel surface in direct contact with the fluid, while plate and tube PVT modules provide a small contact area between the plate and the tube. “In addition, this proposal seeks to solve the problem of temperature inequality, which affects the durability of PV panels,” she added.

The proposed heat exchanger includes three zones for coolant inlet (AZ), heat exchange (ZE) and liquid evacuation (VZ), respectively. It uses water as a coolant, which flows through the heat exchanger to utilize the heat produced by the PV module. “The EZ consists of an alveolar plate, consisting of a flat top wall in contact with the back of the PV module, and a bottom wall,” the group specified. “These walls have a thickness of 0.4 mm, which allows optimal heat transfer between the PV module and the circulating coolant within the channels.”

The heat exchanger is divided into two zones: a solid aluminum zone and a liquid zone where water flows into the solid zone. The PVT panel also contains a photovoltaic module, a Tedlar layer, two transparent layers of ethyl vinyl acetate (EVA) and a glass cover plate.

See also  Spain announces a €750 million incentive program for clean technology production

Using the COMSOL software, the research team ran a series of simulations to assess the system’s performance based on solar radiation and volumetric flow rate. It was believed to be in a stable state and no dust accumulated on its surface. The analysis also took into account parameters such as solar cell temperature, coolant outlet temperature, cell efficiency and yield, as well as thermal energy recovered, thermal efficiency and overall efficiency.

“In COMSOL, PVT and PV modules are joined together using a physically controlled mesh sequence,” the academics explain. “This approach results in a gradual increase in the number of lattice elements at each limit, allowing precise resolution of heat transfer phenomena and flow fields.”

The simulations showed that flow rate is a key factor for panel performance, with each 10 l/h increase in fluid flow reducing the solar cell temperature by approximately 0.885 C, which in turn results in an increase in power output of approximately 0.798 W. Furthermore, each increase in fluid flow by 10 l/h increases cell efficiency by approximately 0.051%.

The PVT panel was also found to achieve electrical, thermal and overall efficiency of approximately 12.11%, 78.59% and 90.7% respectively. “When the flow rate and inlet temperature are kept at 180 l/h and 29 C respectively, the total system efficiency increases from 83.15 to 90.7% while solar radiation increases from 2 x 10 °C.2 to 103 W/m2. So for every increase of 102 W/m2 in terms of solar radiation, there is a 0.94% improvement in overall efficiency,” the academics pointed out.

The system was introduced in the newspaper “Numerical study of a photovoltaic-thermal (PVT) hybrid water-based solar collector with a novel heat exchanger”, which was recently published in e-Prime – Advances in electrical engineering, electronics and energy.

“The proposed PVT-C provides good results in terms of temperature inhomogeneity and overall performance,” the scientists concluded. “In this context, it will be worth recommending the realization of this new PVT-C, which can be easily integrated into the building and adapted to air or water needs depending on the seasons and thermal requirements off the building.”

See also  Trina, Daidohant is launching a new solution for wearing the load for heavy snowfall

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Source link

based box duct exchanger heat panel photovoltaicthermal
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

Aerocompact introduces tool-free PV mounting system

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

Fraunhofer Isee reveals Micro-CPV module with a cost-reducing design

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
Technology

Strategies to reduce the breakdown of perovskiet solar cell, caused by thermal stress – PV Magazine International

By solarenergyFebruary 26, 20250

An international team investigated repeated thermal stress on metalhale perovskiet solar cells and has proposed…

‘Solar Great Wall’ aims to power Beijing and curb desertification by 2030

November 12, 2024

Engie Joint Venture Preps Renovation in the UK -Pomphydro -storage factory

May 21, 2025

Solar Hydroponics and the Future of Gardening (2024)

October 18, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.