Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

California Assembly passes Bill to force NEM 3.0 when the Zonnehuis is sold

June 7, 2025

Jinchen draws up Malaysian unit – PV Magazine International

June 7, 2025

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Saturday, June 7
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Energy Storage - How to increase the coefficient of performance in two-stage cascade heat pumps – SPE
Energy Storage

How to increase the coefficient of performance in two-stage cascade heat pumps – SPE

solarenergyBy solarenergySeptember 18, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

A group of researchers in Thailand outlined a new methodology to identify the optimal temperature in two-stage cascade heat pumps using non-azeotropic refrigerants. Through their analysis, the scientists discovered that the coefficient of performance for simultaneous heating and cooling is affected by the bottleneck temperature at the cascade heat exchanger, with lower temperature levels responsible for a higher COP.

September 18, 2024 Emiliano Bellini

Researchers from Chiang Mai University in Thailand have proposed a new approach to find the optimal temperature to increase the coefficient of performance (COP) of two-stage cascade heat pumps using non-azeotropic refrigerants.

Despite their limited success in industry, non-azeotropic refrigerant mixtures are considered promising in heat pump applications, offering improved efficiency both in terms of coefficient of performance and compressor power.

Two-stage cascade heat pump systems work as standard high temperature side (HS) cycles and low temperature side (LS) cycles that are connected via a heat exchanger. Each cycle consists of a condenser, an expansion valve, an evaporator and a compressor, with the total system including a heat exchanger and a heat sink and with all components in stable flow conditions.

During the LS cycle, the refrigerant is heated and vaporized in the evaporator and then exits as saturated vapor. This pressure is increased by the LS compressor under an isentropic process and the vapor is converted into a saturated liquid, which undergoes irreversible adiabatic expansion at the expansion valve and then re-evaporates by heat absorption at the low temperature evaporator.

During the HS cycle, the working fluid arrives at the heat exchanger as a saturated vapor and then moves to the HS compressor under an isentropic process. After condensation in the condenser, the working fluid turns into a saturated liquid, which is then reduced in temperature and pressure to re-enter the HS evaporator.

See also  GoodWe unveils hybrid inverters for homes with weak wireless service – SPE

The academics explained that identifying the center temperature of these heat pump systems, as well as the condensation and evaporation temperatures of their HS and LS, has always been a difficult task. “In the case of non-azeotropic refrigerants, there is so far no general approach that can be used to indicate the optimum for a two-stage cascade heat pump to achieve the highest COP.,” they stated.

“For specified values ​​of HS condensation and LS evaporation temperatures, an increase in the intermediate temperature leads to a corresponding decrease in HS compression work and an increase in LS compression work. Conversely, a reduction in the intermediate temperature results in the opposite effect. Then the total COP for simultaneous heating and cooling varies depending on the intermediate temperature,” they add.

Through their analysis, the scientists discovered that the COP for simultaneous heating and cooling is affected by the bottleneck temperature at the cascade heat exchanger, with lower temperature levels responsible for a higher COP. They also found that the intermediate temperature increases with both HS condensation temperature and LS evaporation temperature. “Most of the optimal temperatures were found to be lower than the average value of the HS condensation temperature and LS evaporation temperature,” they also explained.

They also concluded that the optimal temperature can be identified by considering the correlation of the correction factor combined with the average temperature between HS condensation and LS evaporation temperatures as a reference. “The results from the newly developed model for optimal intermediate temperatures and maximums COPs showed very good agreement with those calculated using the enthalpy method, with deviations within ±7% and ±3%, respectively,” they pointed out.

See also  Battery storage industry requires more PET and floor support

The proposed approach was described in the study “Optimal center temperature of two-stage cascade heat pump with non-azeotropic refrigerants for simultaneous heating and cooling”, published in Results in technology. Looking ahead, the group said it plans to test the method in multi-stage heat pumps designed for very high-temperature heating and low-temperature cooling.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

cascade coefficient heat increase performance pumps SPE twostage
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

Anker Solix launches F3000 Portable Power Station for Homeback Use – PV Magazine International

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
News

GreenSpark Solar will build 10 community solar projects for Catalyze in New York

By solarenergyJuly 24, 20240

Sustainable energy project developer Catalyze has selected GreenSpark solar energy to build and develop 10…

First Solar opens a 3.5 GW solar panel factory in Alabama

September 26, 2024

New community solar developer Stellera is launched

May 1, 2024

HKUST researchers reveal hidden structure for improved perovskite solar cells

July 22, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

California Assembly passes Bill to force NEM 3.0 when the Zonnehuis is sold

June 7, 2025

Jinchen draws up Malaysian unit – PV Magazine International

June 7, 2025

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025

New Mexico opens $ 5.3 million commercial Energy Efficiency Program

June 7, 2025
Our Picks

California Assembly passes Bill to force NEM 3.0 when the Zonnehuis is sold

June 7, 2025

Jinchen draws up Malaysian unit – PV Magazine International

June 7, 2025

Saatvik Solar starts working on 4.8 GW cell, 4 GW module factory in India

June 7, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.