Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Solar Industry - Solar powered brine management system for hydrogen and chlorine production
Solar Industry

Solar powered brine management system for hydrogen and chlorine production

solarenergyBy solarenergyJanuary 24, 2025No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

Researchers have developed a new energy system consisting of PVT panels, reverse osmosis, reverse electrodialysis and proton exchange membranes. The proposed setup can reportedly produce 18.78 kg/day of hydrogen and 120.6 m3/day of freshwater.

January 24, 2025
Lior Kahana

Scientists from Hamad Bin Khalifa University in Qatar have designed a new solar-powered system for brine management and hydrogen production.

Using the Engineering Equation Solver (EES) software, the team simulated the setup and performed a thermodynamic assessment involving energy, entropy and exergy balances.

“If not managed properly, brine poses serious ecological risks to the marine environment. On land, improper brine disposal can cause soil salinization, making agricultural lands unproductive and contaminating groundwater supplies,” the researchers said. “This dual challenge of meeting energy demand and limiting environmental damage highlights the urgent need for integrated solutions that can simultaneously manage brine efficiently and produce clean energy.”

The proposed system is based on a photovoltaic-thermal (PVT) unit that uses the energy produced to power the various system components and the thermal energy to provide cooling. It also includes a reverse osmosis (RO) desalination unit that converts seawater into freshwater and another byproduct. A reverse electrodialysis (RED) then uses the salinity from the rejected RO brine, as well as a tank of low-salinity water, to generate electricity and hydrogen.

Furthermore, a photochlor-alkali process (PCA) converts the remaining brine into hydrogen, chlorine and sodium hydroxide, using the photoactive material Cu₂O. Additionally, the proton exchange membrane (PEM) fuel cell uses hydrogen produced in both RED and PCA to generate electricity. An ejector cooling system uses thermal energy from the PV/T unit to provide cooling for various system components.

See also  Letter from Chinese PV Industry: CECEP Solar to build 500 MW project with desert technology
The system diagram

Image: Hamad Bin Khalifa University, International Journal of Hydrogen Energy, CC BY 4.0

“During the analysis of the system, the following assumptions are made: the reference temperature and pressure considered during the analysis are 298 K and 101.325 kPa; The surface temperature of the Sun is believed to be 5700 K; the seawater brine consists of NaCl. And the feed streams to the RED system are the solution of water and NaCl; the isentropic efficiency of the pump and compressor is considered 85%; the outlet temperature of the liquid leaving the PV/T system is 65 C; the system operates 8 hours per day due to solar radiation limitations,” the team said.

In addition to various parameters, the academics have determined an irradiance of 800 W/m2. 610 PV/T panels with a maximum electrical generation of 300W have been installed to power the system, converting up to 20% of the solar energy into electricity, while the rest is used for the thermal product. The RP system had a recovery rate of 0.6, the RED used 100 cell pairs, the PEM used 200 cells, and the PCA unit used 2.5 V.

The system was found to achieve energy and exergy efficiency of 66.9% and 23.1%, respectively, with the PVT subsystem exhibiting the highest exergy destruction rate. It could produce 18.78 kg of hydrogen per day and 120.6 m³ of freshwater per day.

“The RED system generates hydrogen at a rate of 0.00041 kg/s, with the production rate increasing with increasing current density, while the PCA system produces hydrogen at a rate of 0.00024 kg/s,” the academics explained . The PEM fuel cell generates 4.9 kW of electricity, but the efficiency decreases as the current density increases.”

See also  Letter from Chinese PV Industry: Aiko Solar starts making back-contact PV panels

They introduced the new concept in “Thermodynamic analysis of a solar-powered integrated system for efficient brine management and hydrogen production”, published in the International Journal of Hydrogen Energy.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

brine chlorine hydrogen management powered production solar system
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

New pollution room for testing dust structure in solar modules – PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
News

Stäubli unveils large format PV connectors

By solarenergyAugust 31, 20240

Stäubli Electrical Connectors has introduced a new product family of large format PV cable connectors.…

Trina releases a white paper on energy storage safety

December 14, 2024

First silicon solar cell celebrates 70th anniversary

April 25, 2024

Dutch utilities to test lower rates during solar production peaks – PV Magazine International

April 17, 2025
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.