Close Menu
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
What's Hot

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Solar Energy News
Friday, June 6
  • News
  • Industry
  • Solar Panels
  • Commercial
  • Residential
  • Finance
  • Technology
  • Carbon Credit
  • More
    • Policy
    • Energy Storage
    • Utility
    • Cummunity
Solar Energy News
Home - Technology - Digital twin for autonomous air monitoring of PV power plants – SPE
Technology

Digital twin for autonomous air monitoring of PV power plants – SPE

solarenergyBy solarenergyNovember 14, 2024No Comments4 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email

An international research team has created a digital twin that reportedly enables the analysis of different scenarios for the air monitoring of PV installations. The new tool is claimed to reduce the risk associated with real-world experimentation and help identify the most effective strategies to improve PV system monitoring.

November 14, 2024
Lior Kahana

An international research team has created a digital twin (DT) platform for testing autonomous air monitoring of large-scale PV power plants. DTs are virtual representations of physical systems, allowing operators and researchers to assess scenarios without the risk associated with real-world experiments.

“The new digital twin-based solution called Digital-PV has been developed for the simulation and managed execution of autonomous air monitoring of PV power plants,” the researchers explain. “It provides a virtual test platform for autonomous flights and missions, including boundary detection, path planning and fault detection, along with data generation capabilities for developing data-driven monitoring and inspection models.”

The DT was based on Unreal Engine (UE), created by American video game company Epic Games to develop game environments. The scientists created a 4 km2 area with small terrain variations and natural features, adjusting the mood and lighting settings to mimic real-world lighting.

“To add installation components such as PV panels and wind turbines to the tier, we purchased the necessary assets and 3D models, including a wind turbine and a PV panel prototype, from 3D model marketplaces,” the group added . “The UE’s built-in static mesh editor was used to create custom meshes of bird droppings in various shapes and sizes, which were used as error marks.”

See also  Prevalon Energy agrees to supply BESS to Idaho Power

The company used Microsoft’s AirSim simulator to simulate an aerial robot in the simulated environment. It was set to record RGB images, identify bird droppings, descend to the location of the fault and take an image of the surface of the likely faulty panel. These images can then be used to train error detection models for artificial intelligence (AI).

“One of the challenges of using AI techniques is collecting a significant amount of annotated data. This is because the publicly available datasets are quite limited,” the academics said. “We demonstrate the potential of Digital-PV in generating datasets for developing monitoring models. To do this, bird droppings were used as an example of an error, while other defects will be included in the future.”

In total, the aerial robot took photos of 2,469 simulated PV samples containing bird droppings. It used an encoder-decoder based fully convolutional network architecture (FCN), adapted from the VGG16 model, for error detection. About 85% of the images were allocated for model training, 10% for validation during the training process and 5% for testing.

The scientists found that the average accuracy for training and validation was 98.31% and 97.93% respectively, which they say shows that the trained model can accurately locate birds falling on PV modules with an average accuracy of 95.2% for test data.

The DTs can also be used to evaluate AI boundary extraction, that is, to identify the PV plant in relation to the environment. The team also demonstrated that they can be used to test the path planning models. For the boundary extraction, they used classical image processing (CIP) and a deep learning (DP)-based model, while for the path planning they used algorithms from the scientific literature. However, the quantitative results of those tests were not presented.

See also  L&G NTR Clean Power Fund acquires 211 MW Irish Portfolio

“By assessing their performance and effectiveness, we gain valuable insights into their capabilities and potential performance in the real world,” the scientists concluded. “This analysis helps advance AI-enabled solutions for air monitoring of PV installations, enabling more efficient inspection and maintenance of these critical renewable energy infrastructures.”

The digital twin was presented in “Digital-PV: a digital twin-based platform for autonomous air monitoring of large-scale photovoltaic power plants”, published in Energy conversion and management. It was proposed by scientists from Iran’s Amirkabir University of Technology, the University of Isfahan, Canada’s Concordia University, Norway’s Norwegian University of Science and Technology (NTNU) and Germany’s Albert Ludwigs University of Freiburg.

This content is copyrighted and may not be reused. If you would like to collaborate with us and reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Source link

air autonomous digital monitoring plants power SPE twin
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
solarenergy
  • Website

Related Posts

New pollution room for testing dust structure in solar modules – PV Magazine International

June 6, 2025

HEWER launches a pre-cassembled unit for Retrofit from Heat Pomp, Installatie-PV Magazine International

June 6, 2025

Birds bloom, successfully breed in the German solar parks – PV Magazine International

June 6, 2025
Leave A Reply Cancel Reply

Don't Miss
Energy Storage

Asahi Kasei to test alkaline water electrolyzer – SPE

By solarenergyMay 14, 20240

Japan’s Asahi Kasei is testing a new alkaline water electrolyzer, while China has begun development…

Helien opens 500 MW solar panel in the Minneapolis area

June 3, 2025

Southeast Asia aims for 18 GW of pumped hydropower by 2033 – SPE

June 18, 2024

Waaree Energies receives orders for 524 MW of solar panels

December 5, 2024
Stay In Touch
  • Facebook
  • Twitter
  • Pinterest
  • Instagram
  • YouTube
  • Vimeo
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025

EDF taps Wärtsilä for two more British battery storage projects

June 6, 2025
Our Picks

InensEnergy completes 250 MW Ohio Solar Project for Microsoft

June 6, 2025

Future housing stands on the roof Zonne -Zon will be mandatory

June 6, 2025

Aerocompact introduces tool-free PV mounting system

June 6, 2025
About
About

Stay updated with the latest in solar energy. Discover innovations, trends, policies, and market insights driving the future of sustainable power worldwide.

Subscribe to Updates

Get the latest creative news and updates about Solar industry directly in your inbox!

Facebook X (Twitter) Instagram Pinterest
  • Contact
  • Privacy Policy
  • Terms & Conditions
© 2025 Tsolarenergynews.co - All rights reserved.

Type above and press Enter to search. Press Esc to cancel.